On the Tensor Products of Maximal Abelian JW-Algebras
نویسنده
چکیده
It is well known in the work of Kadison and Ringrose 1983 that if A and B are maximal abelian von Neumann subalgebras of von Neumann algebras M and N, respectively, then A⊗B is a maximal abelian von Neumann subalgebra of M⊗N. It is then natural to ask whether a similar result holds in the context of JW-algebras and the JW-tensor product. Guided to some extent by the close relationship between a JW-algebraM and its universal enveloping vonNeumann algebra W∗ M , we seek in this article to investigate the answer to this question.
منابع مشابه
Tensor Products of Maximal Abelian Subalgberas of C*-algebras
It is shown that if C1 and C2 are maximal abelian self-adjoint subalgebras (masas) of C*-algebras A1 and A2, respectively, then the completion C1 ⊗ C2 of the algebraic tensor product C1 ⊙ C2 of C1 and C2 in any C*-tensor product A1 ⊗β A2 is maximal abelian provided that C1 has the extension property of Kadison and Singer and C2 contains an approximate identity for A2. Examples are given to show...
متن کاملC*-algebras on r-discrete Abelian Groupoids
We study certain function algebras and their operator algebra completions on r-discrete abelian groupoids, the corresponding conditional expectations, maximal abelian subalgebras (masa) and eigen-functionals. We give a semidirect product decomposition for an abelian groupoid. This is done through a matched pair and leads to a C*-diagonal (for a special case). We use this decomposition to study ...
متن کاملThe non-abelian tensor product of normal crossed submodules of groups
In this article, the notions of non-abelian tensor and exterior products of two normal crossed submodules of a given crossed module of groups are introduced and some of their basic properties are established. In particular, we investigate some common properties between normal crossed modules and their tensor products, and present some bounds on the nilpotency class and solvability length of the...
متن کاملOn the Exponent of Triple Tensor Product of p-Groups
The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...
متن کاملOn normalizers of maximal subfields of division algebras
Here, we investigate a conjecture posed by Amiri and Ariannejad claiming that if every maximal subfield of a division ring $D$ has trivial normalizer, then $D$ is commutative. Using Amitsur classification of finite subgroups of division rings, it is essentially shown that if $D$ is finite dimensional over its center then it contains a maximal subfield with non-trivial normalize...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2009 شماره
صفحات -
تاریخ انتشار 2009